(1) DETERMINE THE STREAM-REACH BOUNDARY. (2) NEAR THE LOWER END OF THE REACH (IN THE DEEPEST PORTION OF THE RUN), COLLECT WATER SAMPLES AND ANALYZE USING THE CHEMICAL TESTS YOU HAVE AVAILABLE. YOU MAY USE YOUR COLLECTION CONTAINER TO OBSERVE WATERCOLOR AND CLARITY AND TO DETERMINE WATER ODORS. (3) MEASURE THE WIDTH-DEPTH AND VELOCITY, AND ESTIMATE THE WATER LEVEL. (4) IF YOU USE A TWO-POLE KICK-NET, COLLECT A MINIMUM OF THREE BENTHIC MACROINVERTEBRATE SAMPLES FROM THE BEST RIFFLE OR RUNS WITHIN YOUR STREAM REACH. USE THE TABLE ON PAGE FIVE TO RECORD INFORMATION ABOUT YOUR COLLECTIONS. (5) EVALUATE THE PHYSICAL AND HABITAT CONDITIONS; RECORD INFORMATION ABOUT KNOWN LAND USE ACTIVITIES. (6) SKETCH YOUR REACH OR SUBMIT PHOTOGRAPHS WITH THE SURVEY, AND ADD ANY OTHER COMMENTS THAT YOU FEEL ARE IMPORTANT. NOTE: A SCIENTIFIC COLLECTION PERMIT FROM WVDNR IS REQUIRED FOR ALL BENTHIC COLLECTIONS. | Stream name | | | | | | urvey date | | | |---|--|---|---|-------------------------------|--|--|-------------|-------| | Watershed | | | | | _ Station | code | | | | Latitude | Longitude | | Dire | ections t | o site | | | | | Survey completed I | | | | | | | | | | Current weather co | | | | | | | | | | Past weather condi | tions (last 3-days) | | | | | | | | | Affiliation | | | Email _ | | | | | | | Mailingaddress | | | | | Phone n | umber | | | | WATER CHEMISTRY
sheets if necessary | : Use the spaces below | v to record the r | esults of your | water ch | emistry aı | nalysis; attach ac | ldition | al | | | Result units | | Result | units | | Re | sult | units | | Temperature (C/F) | | Conductivity | resuit | | Alka | llinity | Juit | | | Dissolved oxygen | | Nitrates | | | | on | | | | pH | | Turbidity | | | | /E-coli | | | | | scribe and record resul | lte\ | | | | | | ı | | stream. The extra licondition; if so, be always indicate the section. | ONS: Use the check boomes are provided to write to indicate these of most dominant conditions. | ite in any additic
on your survey (d | onal comments
check all that a
ion you observ | . You man pply). If ye is not | ay see mo
multiple c
listed, des | ore than one type
conditions are obs
scribe it in the co | of
erved | , | | Water clarity | Water color | | Water/Sedim | ent odor
Water | Sediment | Surface foam | | | | Clear | None | | None | | | None | | | | Murky | Brown | | Fishy | | | Slight | | | | Milky | Black | | Musky | | | Moderate | | | | Muddy | Orange/re | | Rotten egg | | | High | | | | Other (describe) | Gray/Whi | te | Sewage | | | | | | | | Green | | Chemical | | | J | | | | Algae color | Algae abun | dance | Algae grow | th habit | | Streambed colo | r | | | Light green | None | | Even coa | ating | | Brown | | | | Dark green | Scatter | | Hairy | | | Black | | | | Brown | Modera | | Matte | | | Green | | | | Other (describe) | Heavy | | Floatin | - | | White/gray | | | | ` ' | | | _ | | | Orange/red | | | | Physical condition | comments: | | | | | | | | Estimate and indicate the percentage of your reach that is shaded. | > 80 | 80-60 | 60-40 | < 40 | |-----------|-------|----------|------| | Excellent | Good | Marginal | Poor | **WIDTH AND DEPTH:** Record the wetted width and depth of the channel's features (riffles, runs or pools). Choose two or more features to measure. Record the average depth from a minimum of four measure-ments (one of these should be from the deepest part of the feature). The width should be measured from the widest section of the feature. | 1. | Riffle | Wetted width (feet) | Depth ^(feet) | | |----|--------|---------------------|-------------------------|--| | 2. | Run | Wetted width (feet) | Depth (feet) | | | 3. | Pool | Wetted width (feet) |
Depth (feet) | | Channel Profiles: Width and depth measurements can be used to create a cross section profile within your reach. Choose a location in your reach across one of the channel types above. Stretch a tape from bank to bank and anchor it at both ends. Move from left to right facing in an upstream direction; measure the distance from the stream bottom to the top of the tape at selected intervals (i.e. every foot). Record your measurements in the table below. The table provides enough spaces for 20 measurements; if more are necessary you can create your own table on a separate piece of paper. Your tape measure will probably not start at zero so make sure to record the actual position of the tape as you measure across the channel. | V۸ | /idth | interva | ılς | |----|-------|---------|-----| | widin inter | vais | | | | | | | | | |-------------|-----------|-----|----|-----|-----|----|----|----|----| | 1 | 2 | 3 | 4 | 5 | 6 | 1 | 8 | 9 | 10 | 40 | | 4.5 | 4.0 | | 40 | 40 | 00 | | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | l . | | | | | | | | | Depth mea | surements | | | | | | | | | | 1 ' | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 10 | 10 | | 15 | -10 | | 40 | 40 | 00 | | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 1 | l . | | | | | | | | **PEBBLE COUNT**: Collect a minimum of 100-particles from your reach using a Zigzag method, percent habitat method or specific transects (e.g. every 10-meter). If you do not complete a pebble count, **ALWAYS ESTIMATE** streambed composition from the riffles/runs chose for your macroinvertebrate sample collections. | | | Si | ize Classes (I | ntermediate ax | kis in millimet | ers) | | |---|---------------------|------------------|-----------------------|-----------------------------|--------------------|-----------------------|-------------------| | Indicate your method from the choices below. | Silt/clay
< 0.06 | Sand
0.06 – 2 | Fine Gravel
2 – 24 | Coarse
Gravel
25 – 64 | Cobble
65 – 255 | Boulder
256 – 1096 | Bedrock
> 1096 | | Zigzag % Habitat 10-m Transects Woody Debris Includes sticks, roots, leaves etc. | | | | | | | | | Totals | | | | | | | | (A) Long axis (Length) (B) Intermediate axis (Width) (C) Short axis (Height) Pebble counts require two people, one in the stream and one on shore. The person in the stream slowly walks upstream from bank to bank using one of the methods above. After each step the person reaches down without looking, picks up the first particle touched, and measures the intermediate axis with a ruler. The on-shore partner records the measurement. The process continues until 100 pebbles have been measured or the reach has been walked. **HABITAT CONDITIONS**: Score each habitat condition using the scales provided. Add all of the scores to determine your overall habitat score and integrity rating. Feel free to describe additional features that you feel are important. | Sediment deposition | | sition
of th | nal fe | natior
atures
ch | | dep | ositio
10% c | rease
nal fea
of the | atures | , | dep | ositio
80% c | e amo
nal fe
of the | atures | s; | dep | vy am
osition
reach | า; > 6 | 0% of | f | |---------------------|----|-----------------|--------|------------------------|----|-----|-----------------|----------------------------|--------|----|-----|-----------------|---------------------------|--------|----|-----|---------------------------|--------|-------|---| | Score | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | Embeddedness should be evaluated in RIFFLES prior to or during your macroinvertebrate collections. | Embeddedness | surr
spa
grav | e sedir
ounds
ces be
vel, co
lders. | s <10°
etwee
obble | % of t
n the | | surr
the
grav | ound | ment
s 10-3
es bet | 30% c
ween | | surr
the
grav | ound | es be
obble | 60% c
tween | | surr
the
the | ound | ment
s > 60
es bet |)% of
ween | 1 | |--------------|---------------------|---|--------------------------|-----------------|----|---------------------|------|--------------------------|---------------|----|---------------------|------|----------------|----------------|---|--------------------|------|--------------------------|---------------|---| | Score | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | The last three conditions are assessed on both sides of the channel. The **LEFT** and **RIGHT** sides are determined by looking downstream. | Bank vege
protecti | | covered to
vegetatio
(trees, sh
herbs) re
disruption | n; all levels
irubs and
presented;
n from graz
etc. minima
Il plants
o grow | ing, | veg
plar
or n
som
veg
50% | 90% of the ered by natestation; one ats may be to twell reprise disruption etation evide of the potation the ight relation. | ural e level of missing esented; n of dent; > ential | covered to
vegetation
bare soil
present a
cropped v
common; | n; patches | of of v h h is b | < 50% of the boovered by na
regetation; dis
nigh; vegetation
been removed
potential plant
are greatly rec | tural
sruption is
on has
I or the
heights | | | |-----------------------------|----------|---|---|--------------|--|---|--|---|--------------------------------|--|--|---|--|--| | Left | | 10 | 9 | 8 | 3 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | | | | Right | | 10 | 9 | 8 | 3 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | | | | Bank stak | oility | Banks are stable; no evidence of erosion or bank failure; little or no potential for future problems. | | stat
of e | | ent areas
ur, mostly | unstable;
reach has
of erosion
potential | e moderate
60% of the
s some are
n; high
for erosion
oding ever | ely nee a seas seas book onts. | Banks are unstable;
many have eroded
areas (bare soils) along
straight sections or
bends; obvious bank
collapse or failure; >
60% of the reach has
erosion scars. | | | | | | Left | | 10 | 9 | | 3 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | | | | Right | | 10 | 9 | 8 | 3 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | | | | Riparian buff | er width | vegetatio
evidence
impacts s
parking lo
clear-cuts | ots, road be | eds, | veg | e of undistontion 40-one areas of urbance ev | 60 ft; | Zone of undisturbed vegetation 20-40 ft; disturbed areas common throughout the reach. | | t the | Zone of undisturbed vegetation < 20 ft; disturbed areas common throughout entire reach. | | | | | Left | | 10 | 9 | | 3 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | | | | Right | | 10 | 9 | 3 | 3 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | | | | Total score
Integrity ra | ating | > 85
Optimal | | | | 85 - 70
Suboptir | | • | 9 - 50
arginal | | < 50
Poor | | | | SEDIMENT DEPOSITION MAY CAUSE THE FORMATION OF ISLANDS, POINT BARS (AREAS OF INCREASED DEPOSITION USUALLY AT THE BEGINNING OF A MEANDER THAT INCREASE IN SIZE AS THE CHANNEL IS DIVERTED TOWARD THE OUTER BANK) OR SHOALS, OR RESULT IN THE FILLING OF RUNS AND POOLS. USUALLY DEPOSITION IS EVIDENT IN AREAS THAT ARE OBSTRUCTED BY NATURAL OR MANMADE DEBRIS AND AREAS WHERE THE STREAM FLOW DECREASES, SUCH AS BENDS. ## **BENTHIC MACROINVERTEBRATES** Assess your macroinvertebrate collections by counting and identifying to the family-level if possible. Use the table on the **below** to record your collections data. Although streamside identification is possible at this level, WV Save Our Stream's recommends preserving your samples using a full count or standard sub-sampling procedure in a well-lit and more comfortable setting. The dot-dash tally method is a convenient way to record your data. Each dot or dash represents one tally. 1 2 3 4 5 6 7 8 9 10 ## **INSECT GROUPS** | Patterned stoneflies | | Winter stoneflies | | Roach-like stonefly | | |-----------------------|-------|----------------------------|-------|---------------------------------|--| | | | | | | | | | | | | | | | Taxa | Total | Taxa | Total | _
Total | | | Giant stonefly | | Brown stonefly | | Spiny crawler mayfly | | | | | | | | | | | | | | | | | | Total | - | Total | _
Total | | | Square-gilled mayfly | Total | Minnow mayflies | Total | Flatheaded mayfly | | | | | | | | | | | | | | | | | | Tatal | | Tatal | | | | Brush-legged mayfly | Total | Taxa Burrowing mayflies | Total | Total Net-spinning caddisflies | | | | | | | The spinning cadalonies | | | | | | | | | | | | | | | | | Case-building caddisf | Total | Taxa Free-living caddisfly | Total | Taxa Total Common netspinner | | | Case-building caddish | lies | 1 ree-living caudisity | | Common netspinner | | | | | | | | | | | | | | | | | Taxa | Total | D 10" | Total | Total | | | Dragonflies | | Damselflies | | Riffle beetle | | | | | | | | | | | | | | | | | Taxa | Total | Taxa | Total | Total | | | Long-toed beetle | | Water penny | | Other beetles (true bugs) | | | | | | | | | | | | | | | | | | Total | | Total | Taxa Total | | | Hellgrammite/Fishfly | | Alderfly | | Aquatic moth | | | | | | | | | | | | | | | | | | Total | - | Total | _
Total | | | | | | | | | CONTINUE ON THE NEXT PAGE | Non-biting midge | Black fly | | Crane fly | | |---|------------------------|-------------------|-------------------------|-----------------| | | | | | | | | | | | | | Total | + | Total | + | Total | | Watersnipe fly | Dance fly | i otai | Dixid midge | rotar | | | | | | | | | | | | | | Total | | Total | | Total | | Net-wing midge | Horse fly | TOTAL | Other fly larva | Total | | | | | | | | | | | | | | - - | _ | - | ļ ₊ | - | | Total | | Total | Taxa | Total | | Non-Insect Groups | 10. 1/0: 1 | | T a | | | Crayfish | Scud/Sideswimmer | | Aquatic sowbug | | | | | | | | | | | | | | | Total | | Total | | Total | | Water mite | Operculate snails | | Non-operculate snails | 5 | | | | | | | | | | | | | | Total | Taxa | Total | Taxa | Total | | Pea clam | Asian clam | · | Mussel | | | | | | | | | | | | | | | Total | _ | Total | | Total | | Flatworms | Aquatic worms | | Leeches | | | | | | | | | | | | | | | Total | _ | Total | _ | Total | | Other aquatic invertebrates | | Total | | Total | | | Comments: | | | | | | | |
Total Taxa | Total Number | | | | | | | | Taxa Total | <u> </u> | | | | | Describe other aquatic life (e.g. fish, a | | observed, as well | as other indications th | at the reach is | | being used by other animals (i.e. birds | s, mammals, reptiles). | | | | | | | | | | | | | | | | ## **BIOLOGICAL INTEGRITY** The SHADED boxes indicate that multiple FAMILIES are possible; tolerance values are provided. | TV | Macroinvertebrates | Totals | Tolerance score | Number of kinds | TV | Macroinvertebrates | Totals | Tolerance score | Number of kinds | |-------|---|-----------------|--------------------|-----------------|------|-----------------------|--------|-----------------|-----------------| | 1 | Patterned stoneflies | | | | 6 | Aquatic moth | | | | | 2 | Winter stoneflies | | | | 4 | Riffle beetle | | | | | 1 | Roach-like stonefly | | | | 5 | Long-toed beetle | | | | | 1 | Giant stonefly | | | | 3 | Water penny | | | | | 2 | Little brown stonefly | | | | 5 | Whirligig beetle | | | | | 3 | Spiny crawler mayfly | | | | 7 | Other beetles/bugs | | | | | 5 | Square-gilled mayflies | | | | 3 | Hellgrammite/Fishfly | | | | | 4 | Minnow mayflies | | | | 6 | Alderfly | | | | | 3 | Flatheaded mayfly | | | | 9 | Non-biting midge | | | | | 3 | Brush-legged mayfly | | | | 6 | Black fly | | | | | 5 | Burrowing mayflies | | | | 4 | Crane fly | | | | | 4 | Net-spinning caddisflies | | | | 3 | Watersnipe fly | | | | | 3 | Case-building caddisflies | | | | 6 | Dance fly | | | | | 5 | Common netspinner | | | | 5 | Dixid midge | | | | | 3 | Free-living caddisfly | | | | 2 | Net-wing midge | | | | | 4 | Dragonflies | | | | 7 | Horse fly | | | | | 7 | Damselflies | | | | 8 | Other fly larva | | | | | | | | N | on-Insect | Grou | ps | • | | | | 5 | Crayfish | | | | 5 | Pea clam | | | | | 5 | Scud/Sideswimmer | | | | 6 | Asian clam | | | | | 7 | Aquatic sowbug | | | | 4 | Mussel | | | | | 6 | Water mite | | | | 5 | Operculate snails | | | | | 10 | Aquatic worms | | | | 7 | Non-operculate snails | | | | | 10 | Leeches | | | | Othe | er invertebrates | | | | | 7 | Flatworms | | | | | | | | | | the r | plete your calculations using netrics below. These metrics combined to determine your all score and integrity rating. | Total
Number | Total
Tolerance | Total
Kinds | _ | Comments: | | | | | BSVs | Metrics | Results | Points | 10 | 8 | 6 | 4 | 2 | | | |--------------|-----------------|---------|------------------|-------|-----------|-----------|-------------|-------|--|--| | 18 | Total Taxa | | | > 18 | 18 - 15 | 14 - 11 | 10 - 7 | < 7 | | | | 10 | EPT Taxa | | | > 10 | 10 - 8 | 7 - 5 | 4 - 2 | < 2 | | | | 3.00 | Biotic Index | | | < 3.5 | 3.5 - 4.3 | 4.4 – 5.6 | 5.7 – 6.5 | > 6.5 | | | | 90.0 | % EPT Abundance | | | > 80 | 80 - 70 | 69.9 - 60 | 59.9 - 40 | < 40 | | | | 80.0 | % Dominance | | | < 10 | 10 - 15 | 15.1 - 2 | 5 25.1 - 50 | > 50 | | | | 2.0 | % Tolerant | | | < 2 | 2 - 10 | 10.1 - 1 | 5 15.1 - 20 | > 20 | | | | Stream Score | | | Integrity Rating | | | | | | | | | | | | | > 48 | 48 - 3 | 36 | 35 – 24 | < 24 | | | Another way to evaluate the benthic community is to use best standard values (BSVs). BSVs are used to calculate an overall score and integrity rating based on a 0-100 scale. **CLICK-HERE** to learn more. Optimal Suboptimal Marginal ## **DISCHARGE** Determine the discharge by using a flow meter (if available) or other methods such as the FLOAT or a VELOCITY HEAD ROD (VHR). Discharge should be measured from a run (area of the channel with fast moving water with no breaks in the surface such as protruding rocks). The more measurements collected the more accurate your discharge results will be. To convert inches into feet divide by 12. For example, if your depth measurement was 6-inches the result in feet would be 0.5. Indicate the methods chosen to measure the discharge and use the tables to record your results. Use the table on the next page to record your measurements. | Discharge method (| used | | Water Level | | | | | | | |--------------------------|-------------------------|---------------------|--|-------------------|-----------------|-------------------|--|--|--| | Float | VHR | Flow meter | Low | Normal | High | Dry | | | | | Channel width | | feet | | | | | | | | | | | | Use the tab | ole on the next p | age to record y | our velocity data | | | | | Distance (ft) | Depth (ft) | Velocity (ft/sec) | VHR (Rise-inches) Flo | | (sec) | Discharge (cfs) | | | | | 1 | | | | | | | | | | | 2 | | | | | | | | | | | 3 | | | | | | | | | | | 4 | | | | | | | | | | | 5 | | | | | | | | | | | 6 | | | | | | | | | | | 7 | | | | | | | | | | | 8 | | | | | | | | | | | 9 | | | | | | | | | | | 10 | | | | | | | | | | | 11 | | | | | | | | | | | 12 | | | | | | | | | | | 13 | | | | | | | | | | | 14 | | | | | | | | | | | 15 | | | | | | | | | | | 16 | | | | | | | | | | | 17 | | | | | | | | | | | 18 | | | | | | | | | | | 19 | | | | | | | | | | | 20 | | | | | | | | | | | 21 | | | | | | | | | | | 22 | | | | | | | | | | | 23 | | | | | | | | | | | 24 | | | | | | | | | | | Average Depth | h | feet | Use the table be recorded above | . The rises belo | w are in inches | | | | | | Cross Sectional | Area (CSA) | ft ² | Rise (R) | Velocity | Rise (R) | Velocity | | | | | (CSA = Average Depth x V | Width) | | 1/4 | 1.2 | 3 1/4 | 4.2 | | | | | | | | 1/2 | 1.6 | 3 ½ | 4.3 | | | | | | | | ³ / ₄ | 2.0 | 3 ¾
4 | 4.5
4.6 | | | | | Discharge = CSA | x Velocity | 1 1/4 | 2.6 | 4 1/4 | 4.8 | | | | | | = | X | | 1 1/2 | 2.8 | 4 1/2 | 4.9 | | | | | = | cfs (ft ³ /s | sec) | 1 3/4 | 3.1 | 4 3/4 | 5.0 | | | | | | | , | 2 | 3.3 | 5 | 5.2 | | | | | If you use a float rec | ord your distance be | elow and the number | 2 1/4 | 3.5 | 5 1/4 | 5.3 | | | | | of seconds it took to | travel the distance is | n the column | 2 ½ | 3.7 | 5 ½ | 5.4 | | | | | indicated. | | | 2 3/4 | 3.8 | 5 ¾ | 5.5 | | | | | | | | 3 | 4.0 | 6 | 5.7 | | | | | Float distance (fe | et) | | VHR Velocity = $8 \times \sqrt{R}$, where R is rise in feet | | | | | | | Submit an original or clear copy of your survey to the <u>Coordinator</u> at the address provided below. For more information call (304) 926-0499 Ext. 1710 or visit: http://www.dep.wv.gov/sos WV Department of Environmental Protection Save Our Streams Program 601 57th Street, SE Charleston, WV 25304